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Introduction

 Accelerator physics frameworks are a way to 
combine physics capabilities
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Component motivation

 Complexity of scientific software increases with simulation fidelity, 
multi-physics coupling, and computer power

 Common Component Architecture (CCA) component vision: 
Enable the HPC community to leverage existing applications, 
creating modular, reusable software components that facilitate the 
combined use of historically independent codes to add new 
capabilities (see www.cca-forum.org)

 Approach:  Develop a prototype accelerator simulation from 
existing codes that were not originally designed to work together; 
leverage external math/cs tools developed by experts 
(TOPS/PERI)

 Long-term Goal:  Foster a component community in 
computational accelerator physics, with emphasis on easily 
incorporating new algorithms and performance enhancements



Infrastructure: components
prototype toolkit

• Components:  interact only through well-defined interfaces

• Ports: interfaces through which components interact (provides/uses pattern)

• Framework:  holds components while applications are assembled and executed, 
controls the connection of ports, provides services to components

• Key features of CCA components
– Programming language interoperability

– Via SIDL/Babel (LLNL)
– Dynamic composability
– Encouragement of common interfaces

Screenshot of Ccaffeine (SNL) framework’s GUI

• Sample simulations
– FODO cell demo
– Apply space charge kick
– Code at pcac.fnal.gov



Infrastructure: components
defining interfaces

• Refactoring Synergia2 and 
exploring interface issues for 
common functionalities

– Beam bunch
– Beamline

• Demonstrated interchanging CHEF and 
MaryLie beamline components at the 
map level, even though beamline 
models themselves are very different

– Space charge
• Synergia2 can use space charge 

modules from either IMPACT or 
Sphraena

– Electron cloud
 Challenges

– Granularity: Overheads that apply per 
particle get an extra factor of ~107

• unacceptable … use aggregation

– Parallel decomposition of fields, etc., 
must be compatible:  may force 
coarser granularity
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Infrastructure: components
CCA electron cloud

• F90-based beam optics 
components (quadrupoles 
and drifts) from the 
MaryLie/Impact application 
(LBNL)

• C++ and F90 particle store 
components from the 
Synergia2 framework 
(FNAL)

• A newly implemented        
C++-based space charge 
solver, Sphyraena, which 
uses Synergia2, PETSc 
(ANL), and FFTW

• C++ ionization 
components from 
TxPhysics (Tech-X)

Uses CCA tools:
• Bocca: Creates skeletal structure for a 

component and its interfaces, including 
the entire build system

• ComPASS provided feedback to 
Bocca developers on new 
functionality needed

• SIDL/Babel:  Provides language 
interoperability
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Infrastructure: components
CCA ecloud performance evaluation

•  Validated performance of component and non-component codes
•  Using automated performance proxy generation facilities available to all 
CCA components (via TAU, Univ. of Oregon, affiliated with PERI)
•  Time for solvers and integrators dominates; ongoing work with TOPS to 
address solvers issues



Infrastructure: components
ongoing and future work

 Immediate priorities: Critical for ComPASS component integration

• Collaborating with TASCS to address
– Babel/SIDL interlanguage capabilities with struct support, broad support of Fortran 

compilers

– Ability to run on leadership class facilities (including Cray XT4, BG/P)

• Define new space charge interface (interchangeable use of several space 
charge algorithms)

• Evaluate performance of original Synergia application and component variant 
on space charge applications

 Longer-term vision:  Collaborate with TASCS, PERI, and TOPS to address 
issues in Computational Quality of Service (CQoS) for accelerator simulations, 

• How, during runtime, can we make make sound choices for reliability, 
accuracy, and performance, taking into account the problem instance and 
computational environment?

– Composition: select initial component implementations and configuration 
parameters

– Reconfiguration: change parameters

– Substitution: change implementations



Infrastructure: visualization

 Advanced visualization is 
not useful in everyday work 
until conversion barriers 
can be overcome

 Collaboration with VisIt 
team has produced a VisIt 
Synergia plugin
• Plugin code available in 

Synergia repository
• Data format standards 

created
• Particle data ready
• Field data under 

development





Porting: capability machines

 Porting issues are simplest for large, monolithic written in 
Fortran, C, or C++

 Multi-language frameworks provide more challenges
• Synergia utilizes Python, C++, Fortran

 New machines have new complexities
• Synergia ran on Seaborg

 Lack of shared library support on NERSC's Franklin a huge 
barrier
• Porting not cost-effective at this point

 ALCF's Surveyor/Intrepid is a workable solution
• Synergia recently ported
• Integrating BG/P into Synergia workflow is a work in progress



Solver development: integrated Green 
functions

Integrated Green function Algorithm for large aspect ratio:

x (sigma)

Ey



Solver development: Sphyraena

 Sphyraena is the native Synergia solver suite
• Available for other applications

 3D, open boundary conditions
• FFT + Green Functions a la Hockney

– FFTW

• Interpolated Green Functions for high large aspect ratios
– Optimized for z >> x,y

 3D, closed cylindrical boundary conditions
• FFT (z,theta), finite difference in r

– FFTW

 3D, closed elliptical boundary conditions
• Finite differences, stretched grid

– PETSc



Solver development:
Sphyraena elliptical solver

 New, finite-difference based elliptical solver
• Uses PETSc

Field solution for benchmark problem
excellent parallel scaling performance 

provided by PETSc libraries
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 ... and produce a test in all coordinates

Solver development: testing

 Full testing of 3D solvers is not 
trivial

 Take a non-trivial charge density



Solver development: future

 Expand boundary conditions
• Further optimize elliptical case

 Expect to benefit from PERI optimization work
• New postdoc
• Collaboration with Sheri Lee has already produced 

substantial improvements in IMPACT

 Optimize parallelization schemes
• Compare with other solver implementations

 Other algorithmic improvements
• Ongoing research



Scaling and performance: domain 
decomposition

PE1 PE3PE2



Scaling and performance: particle and 
field decomposition

PE1 PE3PE2



Scaling and performance: decomposition 
scheme comparison

Strong scaling study on Cray XT



Scaling and performance

 Parallel scaling of 
BeamBeam3D on ALCF's 
Intrepid

 Some simulations require 
many time steps, but can be 
utilize “small” grids (O(106) 
degrees of freedom)
• Example:BeamBeam simulation

– 800 hrs on Intrepid to 
simulate 1 sec in Tevatron

– Effect of interest develops 
over 15 min

• Simple solver improvements will 
not increase scalability by orders 
of magnitude
– Not enough degrees of 

freedom

 Algorithmic 
improvements are 
necessary



Scaling and performance, continued

 Strong scaling results from 
Synergia on Surveyor (ALCF)
• 64x64x1024 grid, 200M 

particles

 Weak scaling results from 
IMPACT-T on Franklin 
(NERSC)

1000 307.5 64x128x128 1.25 1.0

2000 308.7  64x128x256 2.5 0.996

4000 316.4 64x256x256 5 0.972

8000 320.8 64x256x512 10 0.958

16000 346.6 64x256x1024 20 0.887

# processors time (sec) mesh size
macroparticles 
(billions)

efficiency



Capability development: resistive wall

 Developed for BeamBeam3D simulations of 
Tevatron

 Dipole component of resistive-wall wakefields
 Includes true multiple bunch implementation in 

Synergia2
• Bunches are coupled only through resistive wall

 Kicks are applied to each particle from all earlier 
slices



Capability development: electron cloud

 Electron cloud module under development
• Electron production

– TxPhysics

• Cloud evolution
– Single-particle transport currently being benchmarked against 

Vorpal

• Beam-cloud interaction
– Sphyraena solver

• Preliminary componentization completed

 Development paused in order to devote resources 
to current priorities
• See Applications



Applications

 From the proposal
• Run II

– Tevatron

• ILC
– Ring To Main Linac (RTML)
– Damping Ring

– Dropped due to shift in community priorities

 New priorities
• Project X

– Main Injector
– Debuncher (Mu2e)



Applications: Tevatron

 Multi-physics 
simulations
• Beam-beam
• Resistive Wall
• Chromaticity

 Large problem: 36x36 
bunches

 Run at NERSC and 
ALCF
• Stability a problem at 

NERSC
• ALCF working well

data

Simulation with and without mitigation



Applications: ILC

 Space charge in the 
return to main linac 
(RTML) line was a 
pressing question in 
ILC design

 Performed simulations 
with Synergia2
• Significant effort in 

reproducing optics 
parameters

• Final report presented to 
ILC designers
– Space charge not a show-

stopper



Applications: Project X

 With the sudden cuts in ILC funding, Project X has become 
a main priority for ComPASS
• Main Injector
• Debuncher

 The accelerator physics challenges of the intensity frontier 
are exactly those that the ComPASS applications are 
designed to address
• Multi-physics

– Space charge

– Resistive Wall
– Electron cloud

• Multi-scale
– Size: beam size vs. magnet/pipe size, etc.
– Time: accelerator cycle vs. cloud growth vs. microwave propagation, etc.



Applications: Main Injector resistive wall

 Testing ground for new resistive wall module
 Well-known issue in Main Injector

nominal intensity

10x intensity

100x intensity

emittance growth



Applications: Microwave electron cloud 
detector in the Main Injector

 New request
• Simulate microwave 

propagation (electron 
cloud detector 
apparatus) in the Main 
Injector

• Multi-scale and Multi-
physics problem well-
suited to VORPAL

• Fermilab-TechX 
collaboration 

Pictures from Vorpal showing an instant snap-shot of the 
electron cloud multipacting process.  X along the beam 
axis.  Y is the vertical axis.   Top: the  current density 
along the x axis, and corresponds to a  8 GeV, 5x1011 
protons bunch, with a Gaussian profile in all 3 direction. 
Bottom: density/color map of the electrons, on the X-Y 
plane. 



Applications: Debuncher (Mu2e)

 Mu2e project requires switching Debuncher from 
low-intensity antiproton beam to high-intensity 
proton beam (105 intensity increase)

 Proposed resonant extraction requires highly-
nonlinear lattice

Stroboscopic plots of nonlinear lattice
VisIt visualization of bunch at beginning
Of resonant extraction
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